Air Quality Implications of Crude Oil Evaporation

New Insights from Bottom-Up Modeling

Greg Drozd, David Worton, Haofei Zhang, Christoph Aeppli Chris Reddy, Allen Goldstein

Outline

- 1. The fate of spilled oil
- 2. Atmospheric pollutant formation from the Deepwater Horizon (DWH) disaster
- 3. Evaporation modeling
- 4. Comprehensive composition measurements of oil
- 5. Applications of evaporation model
 - a. How is released oil transported?
 - b. How much and what type of aerosol is formed?

Oil Spills Fate of Oil

Oil Spills Pollutant Formation

Deepwater Horizon (DWH) Spill Spring 2010

Deepwater Horizon Spill Aerosol Formation

1) Aerosol formed at urban levels over DWH spill

Deepwater Horizon Spill Aerosol Formation

- 1) Aerosol formed at urban levels over DWH spill
- 2) Can oil evaporation be sufficiently modeled to predict aerosol production?

Explicit Evaporation Calculation

$$\frac{dM}{dt} = \sum_{i} \frac{K_i * P_i^{298} * \chi_i}{R * T} * e^{\Delta H_{vap,i} * \frac{1}{T} - \frac{1}{298}}$$

Explicit Evaporation Calculation

$$\frac{dM}{dt} = \sum_{i} \frac{K_i * P_i^{298} * \chi_i}{R * T} * e^{\Delta H_{vap,i} * \frac{1}{T} - \frac{1}{298}}$$

Explicit Evaporation Calculation

$$\frac{dM}{dt} = \sum_{i} \frac{K_i * P_i^{298} * \chi_i}{R * T} * e^{\Delta H_{vap,i} * \frac{1}{T} - \frac{1}{298}}$$

$$\frac{dM}{dt} = \sum_{i} \frac{K_i * P_i^{298} * \chi_i}{R * T} * e^{\Delta H_{vap,i} * \frac{1}{T} - \frac{1}{298}}$$

Comprehensive composition allows:

- 1) Direct calculation of evaporation
- 2) Explicit emissions for species that form air pollution

GC-VUV-MS : Composition Determination of Oil

Diesel Fuel:

Mass Spectrum vs. GC retention time

GC-VUV-MS

Low-fragmentation

Molecular weight identifies hydrocarbons

Crude Oil Composition: Branching

Crude Oil Composition

Gulf of Mexico: Light Crude

- 1) Each compound in oil is classified by:
 - i. carbon number,
 - ii. number of cyclic rings
 - iii. aromaticity
 - iv. degree of branching
- 2) These are the key features needed to predict volatility and aerosol production.

Crude Oil Volatility

- 1) DWH components span the full range of volatilities
- 2) SOA formation potential of evaporating liquids depends both evaporation rate and SOA yield, both related to vapor pressure

Surface Samples From *DWH* Spill: Locations and Descriptions

Sample	Туре	Location	Approximate Surface Transit Time
S2	Fresh-slick	36km South	1 day
S3	Aged-slick	130km Northwest	5 days

Surface Sample Distributions: Measurements for S2 and S3

Measurement vs. Predictions 5 Days Evaporative Aging of DWH Oil

Measurement vs. Predictions 5 Days Evaporative Aging of DWH Oil

- *a) Peaks* of distributions match, but the *leading edges* do not match
- b) Model results show the oil did not follow simple surface transport

Surfaced Oil Has Multiple Transport Histories

- 1) Sub-surface transport prevents evaporation
- 2) Evaporative age of surface oil affects emissions and pollutant formation

Sampling Site

Sampling Site

Sampling Site

The final measured distribution can be fit from a basis set of distributions with a range of evaporative ages

Measurements vs. Model: Range of Evaporative Ages

The measured composition can be fit by combining oil with different evaporative ages.

Evaporative Age	Fraction of Final Oil	
0.5-1.5 days.	80%	
4.8 days.	20%	

Predicting Potential Pollutant Formation

Predicting Potential Pollutant Formation

SOA yields utilize current SOA parameterizations (Gentner 2012, Jathar 2014, Zhang 2014) and available Low-NOx yield measurements for IVOC (Cappa 2013, Tkacik 2012)

Predicting Potential Aerosol Formation

- 1) IVOCs are important SOA precursors
- 2) Experiments needed for a wider range of chemical structures (cyclics)
 - Same compound classes critical for vehicular emissions (e.g. diesel trucks)

Predicting SOA Changing Dominant Precursor Emissions

- 1) Initial SOA precursor flux (<1 hr.): Aromatics dominate
- 2) Sustained SOA precursor flux: branched-cyclic alkanes dominate

Predicting SOA Total Aerosol Production

- 1) Total potential SOA yield is 6.5% for evaporative oil emissions over 2 days Observation-based estimates were 8% (+/-4) 3 hr. downwind (~45 km) of DHW site IVOCs accumulate as the plume travels over the aged slick
- 2) IVOCs are important SOA precursors

Conclusions:

Predicting how/where oil travels Predicting Aerosol Formation

Composition measurements with evaporation modeling constrain:

- 1) Where and how oil travels
- 2) How much SOA will form in a particular location

Predicting aerosol production from oil spills is critical for assessing health effects